Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.076
Filtrar
1.
J Cell Mol Med ; 28(8): e18306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613357

RESUMO

Topical patch delivery of deferoxamine (DFO) has been studied as a treatment for this fibrotic transformation in irradiated tissue. Efficacy of a novel cream formulation of DFO was studied as a RIF therapeutic in unwounded and excisionally wounded irradiated skin. C57BL/6J mice underwent 30 Gy of radiation to the dorsum followed by 4 weeks of recovery. In a first experiment, mice were separated into six conditions: DFO 50 mg cream (D50), DFO 100 mg cream (D100), soluble DFO injections (DI), DFO 1 mg patch (DP), control cream (Vehicle), and irradiated untreated skin (IR). In a second experiment, excisional wounds were created on the irradiated dorsum of mice and then divided into four treatment groups: DFO 100 mg Cream (W-D100), DFO 1 mg patch (W-DP), control cream (W-Vehicle), and irradiated untreated wounds (W-IR). Laser Doppler perfusion scans, biomechanical testing, and histological analysis were performed. In irradiated skin, D100 improved perfusion compared to D50 or DP. Both D100 and DP enhanced dermal characteristics, including thickness, collagen density and 8-isoprostane staining compared to untreated irradiated skin. D100 outperformed DP in CD31 staining, indicating higher vascular density. Extracellular matrix features of D100 and DP resembled normal skin more closely than DI or control. In radiated excisional wounds, D100 facilitated faster wound healing and increased perfusion compared to DP. The 100 mg DFO cream formulation rescued RIF of unwounded irradiated skin and improved excisional wound healing in murine skin relative to patch delivery of DFO.


Assuntos
Desferroxamina , Síndrome da Fibrose por Radiação , Camundongos , Animais , Camundongos Endogâmicos C57BL , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Pele , Perfusão
2.
Health Qual Life Outcomes ; 22(1): 14, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38302961

RESUMO

Understanding consequences of poor chelation compliance is crucial given the enormous burden of post-transfusional iron overload complications. We systematically reviewed iron-chelation therapy (ICT) compliance, and the relationship between compliance with health outcome and health-related quality of life (HRQoL) in thalassaemia patients. Several reviewers performed systematic search strategy of literature through PubMed, Scopus, and EBSCOhost. The preferred reporting items of systematic reviews and meta-analyses (PRISMA) guidelines were followed. Of 4917 studies, 20 publications were included. The ICT compliance rate ranges from 20.93 to 75.3%. It also varied per agent, ranging from 48.84 to 85.1% for desferioxamine, 87.2-92.2% for deferiprone and 90-100% for deferasirox. Majority of studies (N = 10/11, 90.91%) demonstrated significantly negative correlation between compliance and serum ferritin, while numerous studies revealed poor ICT compliance linked with increased risk of liver disease (N = 4/7, 57.14%) and cardiac disease (N = 6/8, 75%), endocrinologic morbidity (N = 4/5, 90%), and lower HRQoL (N = 4/6, 66.67%). Inadequate compliance to ICT therapy is common. Higher compliance is correlated with lower serum ferritin, lower risk of complications, and higher HRQoL. These findings should be interpreted with caution given the few numbers of evidence.


Assuntos
Quelantes de Ferro , Talassemia , Humanos , Quelantes de Ferro/uso terapêutico , Deferasirox , Deferiprona , Desferroxamina/uso terapêutico , Qualidade de Vida , Piridonas/efeitos adversos , Benzoatos/efeitos adversos , Triazóis/efeitos adversos , Talassemia/tratamento farmacológico , Terapia por Quelação , Ferritinas , Avaliação de Resultados em Cuidados de Saúde
3.
BMJ Open ; 14(2): e077342, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331857

RESUMO

INTRODUCTION: Despite the improvement in medical management, many patients with transfusion-dependent ß-thalassaemia die prematurely due to transfusion-related iron overload. As per the current guidelines, the optimal chelation of iron cannot be achieved in many patients, even with two iron chelators at their maximum therapeutic doses. Here, we evaluate the efficacy and safety of triple combination treatment with deferoxamine, deferasirox and deferiprone over dual combination of deferoxamine and deferasirox on iron chelation in patients with transfusion-dependent ß-thalassaemia with very high iron overload. METHODS AND ANALYSIS: This is a single-centre, open-label, randomised, controlled clinical trial conducted at the Adult and Adolescent Thalassaemia Centre of Colombo North Teaching Hospital, Ragama, Sri Lanka. Patients with haematologically and genetically confirmed transfusion-dependent ß-thalassaemia are enrolled and randomised into intervention or control groups. The intervention arm will receive a combination of oral deferasirox, oral deferiprone and subcutaneous deferoxamine for 6 months. The control arm will receive the combination of oral deferasirox and subcutaneous deferoxamine for 6 months. Reduction in iron overload, as measured by a reduction in the serum ferritin after completion of the treatment, will be the primary outcome measure. Reduction in liver and cardiac iron content as measured by T2* MRI and the side effect profile of trial medications are the secondary outcome measures. ETHICS AND DISSEMINATION: Ethical approval for the study has been obtained from the Ethics Committee of the Faculty of Medicine, University of Kelaniya (Ref. P/06/02/2023). The trial results will be disseminated in scientific publications in reputed journals. TRIAL REGISTRATION NUMBER: The trial is registered in the Sri Lanka Clinical Trials Registry (Ref: SLCTR/2023/010).


Assuntos
Sobrecarga de Ferro , Talassemia beta , Adulto , Adolescente , Humanos , Deferasirox/uso terapêutico , Deferiprona/uso terapêutico , Desferroxamina/uso terapêutico , Talassemia beta/complicações , Talassemia beta/tratamento farmacológico , Benzoatos/uso terapêutico , Benzoatos/efeitos adversos , Triazóis/efeitos adversos , Piridonas , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/etiologia , Quelantes de Ferro/efeitos adversos , Ferro/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Int Immunopharmacol ; 129: 111662, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340421

RESUMO

This study aimed to examine the effects of the secretome released by human umbilical cord-mesenchymal stem cells (MSC) as a result of preconditioning with deferoxamine (DFX), a hypoxia mimetic agent, on type 1 diabetes (T1D), by comparing it with the secretome produced by untreated MSCs. Initially, the levels of total protein, IL4, IL10, IL17, and IFNγ in the conditioned medium (CM) obtained from MSCs subjected to preconditioning with 150 µM DFX (DFX-CM) were analyzed in comparison to CM derived from untreated MSCs (N-CM). Subsequently, the CMs were administered to rats with T1D within a specific treatment plan. Following the sacrification, immunomodulation was evaluated by measuring serum cytokine levels and assessing the regulatory T cell (Treg) ratio in spleen mononuclear cells. Additionally, ß-cell mass was determined in the islets by immunohistochemical labeling of NK6 Homeobox 1 (Nkx6.1), Pancreatic duodenal homeobox-1 (Pdx1), and insulin antibodies in pancreatic sections. In vitro findings indicated that the secretome levels of MSCs were enhanced by preconditioning with DFX. In vivo, the use of DFX-CM significantly increased the Treg population, and accordingly, the level of inflammatory cytokines decreased. In ß-cell marker labeling, D + DFX-CM showed significantly increased PDX1 and insulin immunoreactivity. In conclusion, while the factors released by MSCs without external stimulation had limited therapeutic effects, substantial improvements in immunomodulation and ß-cell regeneration were seen with DFX-preconditioned cell-derived CM.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Ratos , Humanos , Animais , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Diabetes Mellitus Tipo 1/terapia , Secretoma , Citocinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Imunomodulação , Cordão Umbilical , Regeneração
5.
Blood Transfus ; 22(1): 75-85, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37146300

RESUMO

BACKGROUND: In transfusion-dependent thalassemia patients who started regular transfusions in early childhood, we prospectively and longitudinally evaluated the efficacy on pancreatic iron of a combined deferiprone (DFP) + desferrioxamine (DFO) regimen versus either oral iron chelator as monotherapy over a follow-up of 18 months. MATERIALS AND METHODS: We selected patients consecutively enrolled in the Extension-Myocardial Iron Overload in Thalassemia network who received a combined regimen of DFO+DFP (No.=28) or DFP (No.=61) or deferasirox (DFX) (No.=159) monotherapy between the two magnetic resonance imaging scans. Pancreatic iron overload was quantified by the T2* technique. RESULTS: At baseline no patient in the combined treatment group had a normal global pancreas T2* (≥26 ms). At follow-up the percentage of patients who maintained a normal pancreas T2* was comparable between the DFP and DFX groups (57.1 vs 70%; p=0.517).Among the patients with pancreatic iron overload at baseline, global pancreatic T2* values were significantly lower in the combined DFO+DFP group than in the DFP or DFX groups. Since changes in global pancreas T2* values were negatively correlated with baseline pancreas T2* values, the percent changes in global pancreas T2* values, normalized for the baseline values, were considered. The percent changes in global pancreas T2* values were significantly higher in the combined DFO+DFP group than in either the DFP (p=0.036) or DFX (p=0.030) groups. DISCUSSION: In transfusion-dependent patients who started regular transfusions in early childhood, combined DFP+DFO was significantly more effective in reducing pancreatic iron than was either DFP or DFX.


Assuntos
Sobrecarga de Ferro , Talassemia , Talassemia beta , Humanos , Pré-Escolar , Ferro/uso terapêutico , Deferasirox , Deferiprona/uso terapêutico , Desferroxamina/uso terapêutico , Quelantes de Ferro/uso terapêutico , Piridonas/uso terapêutico , Talassemia beta/diagnóstico por imagem , Talassemia beta/tratamento farmacológico , Benzoatos/uso terapêutico , Triazóis/uso terapêutico , Quimioterapia Combinada , Sobrecarga de Ferro/diagnóstico por imagem , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/etiologia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Pâncreas/diagnóstico por imagem
6.
Int J Mol Sci ; 24(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069073

RESUMO

The design of clinical protocols and the selection of drugs with appropriate posology are critical parameters for therapeutic outcomes. Optimal therapeutic protocols could ideally be designed in all diseases including for millions of patients affected by excess iron deposition (EID) toxicity based on personalised medicine parameters, as well as many variations and limitations. EID is an adverse prognostic factor for all diseases and especially for millions of chronically red-blood-cell-transfused patients. Differences in iron chelation therapy posology cause disappointing results in neurodegenerative diseases at low doses, but lifesaving outcomes in thalassemia major (TM) when using higher doses. In particular, the transformation of TM from a fatal to a chronic disease has been achieved using effective doses of oral deferiprone (L1), which improved compliance and cleared excess toxic iron from the heart associated with increased mortality in TM. Furthermore, effective L1 and L1/deferoxamine combination posology resulted in the complete elimination of EID and the maintenance of normal iron store levels in TM. The selection of effective chelation protocols has been monitored by MRI T2* diagnosis for EID levels in different organs. Millions of other iron-loaded patients with sickle cell anemia, myelodysplasia and haemopoietic stem cell transplantation, or non-iron-loaded categories with EID in different organs could also benefit from such chelation therapy advances. Drawbacks of chelation therapy include drug toxicity in some patients and also the wide use of suboptimal chelation protocols, resulting in ineffective therapies. Drug metabolic effects, and interactions with other metals, drugs and dietary molecules also affected iron chelation therapy. Drug selection and the identification of effective or optimal dose protocols are essential for positive therapeutic outcomes in the use of chelating drugs in TM and other iron-loaded and non-iron-loaded conditions, as well as general iron toxicity.


Assuntos
Sobrecarga de Ferro , Talassemia beta , Humanos , Deferiprona/uso terapêutico , Desferroxamina/uso terapêutico , Piridonas/efeitos adversos , Quelantes de Ferro/efeitos adversos , Sobrecarga de Ferro/etiologia , Sobrecarga de Ferro/induzido quimicamente , Terapia por Quelação/métodos , Ferro/metabolismo , Talassemia beta/tratamento farmacológico , Talassemia beta/complicações , Quimioterapia Combinada
7.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138961

RESUMO

89Zr-iPET has been widely used for preclinical and clinical immunotherapy studies to predict patient stratification or evaluate therapeutic efficacy. In this study, we prepared and evaluated 89Zr-DFO-anti-PD-L1-mAb tracers with varying chelator-to-antibody ratios (CARs), including 89Zr-DFO-anti-PD-L1-mAb_3X (tracer_3X), 89Zr-DFO-anti-PD-L1-mAb_10X (tracer_10X), and 89Zr-DFO-anti-PD-L1-mAb_20X (tracer_20X). The DFO-anti-PD-L1-mAb conjugates with varying CARs were prepared using a random conjugation method and then subjected to quality control. The conjugates were radiolabeled with 89Zr and evaluated in a PD-L1-expressing CT26 tumor-bearing mouse model. Next, iPET imaging, biodistribution, pharmacokinetics, and ex vivo pathological and immunohistochemical examinations were conducted. LC-MS analysis revealed that DFO-anti-PD-L1-mAb conjugates were prepared with CARs ranging from 0.4 to 2.0. Radiochemical purity for all tracer groups was >99% after purification. The specific activity levels of tracer_3X, tracer_10X, and tracer_20X were 2.2 ± 0.6, 8.2 ± 0.6, and 10.5 ± 1.6 µCi/µg, respectively. 89Zr-iPET imaging showed evident tumor uptake in all tracer groups and reached the maximum uptake value at 24 h postinjection (p.i.). Biodistribution data at 168 h p.i. revealed that the tumor-to-liver, tumor-to-muscle, and tumor-to-blood uptake ratios for tracer_3X, tracer_10X, and tracer_20X were 0.46 ± 0.14, 0.58 ± 0.33, and 1.54 ± 0.51; 4.7 ± 1.3, 7.1 ± 3.9, and 14.7 ± 1.1; and 13.1 ± 5.8, 19.4 ± 13.8, and 41.3 ± 10.6, respectively. Significant differences were observed between tracer_3X and tracer_20X in the aforementioned uptake ratios at 168 h p.i. The mean residence time and elimination half-life for tracer_3X, tracer_10X, and tracer_20X were 25.4 ± 4.9, 24.2 ± 6.1, and 25.8 ± 3.3 h and 11.8 ± 0.5, 11.1 ± 0.7, and 11.7 ± 0.6 h, respectively. No statistical differences were found between-tracer in the aforementioned pharmacokinetic parameters. In conclusion, 89Zr-DFO-anti-PD-L1-mAb tracers with a CAR of 1.4-2.0 may be better at imaging PD-L1 expression in tumors than are traditional low-CAR 89Zr-iPET tracers.


Assuntos
Quelantes , Neoplasias , Humanos , Camundongos , Animais , Quelantes/uso terapêutico , Radioisótopos/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Anticorpos Monoclonais/uso terapêutico , Distribuição Tecidual , Antígeno B7-H1 , Desferroxamina/uso terapêutico , Neoplasias/tratamento farmacológico , Zircônio/farmacocinética , Linhagem Celular Tumoral
8.
Sci Rep ; 13(1): 20145, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978208

RESUMO

Retinal ischemia‒reperfusion (I/R) injury can cause significant damage to human retinal neurons, greatly compromising their functions. Existing interventions have been proven to have little effect. Ferroptosis is a newly discovered type of programmed cell death that has been found to be involved in the process of ischemia‒reperfusion in multiple organs throughout the body. Studies have shown that it is also present in retinal ischemia‒reperfusion injury. A rat model of retinal ischemia‒reperfusion injury was constructed and treated with deferoxamine. In this study, we found the accumulation of Fe2+, reactive oxygen species (ROS), malondialdehyde (MDA), and the consumption of glutathione (GSH) via ELISA testing; increased expression of transferrin; and decreased expression of ferritin, SLC7A11, and GPX4 via Western blotting (WB) and real-time PCR testing. Structural signs of ferroptosis (mitochondrial shrinkage) were observed across multiple cell types, including retinal ganglion cells (RGCs), photoreceptor cells, and pigment epithelial cells. Changes in visual function were detected by F-VEP and ERG. The results showed that iron and oxidative stress were increased in the retinal ischemia‒reperfusion injury model, resulting in ferroptosis and tissue damage. Deferoxamine protects the structural and functional soundness of the retina by inhibiting ferroptosis through the simultaneous inhibition of hemochromatosis, the initiation of transferrin, and the degradation of ferritin and activating the antioxidant capacity of the System Xc-GSH-GPX4 pathway.


Assuntos
Ferroptose , Traumatismo por Reperfusão , Baixa Visão , Humanos , Animais , Ratos , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Reperfusão , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/tratamento farmacológico , Ferritinas , Glutationa , Transferrinas , Espécies Reativas de Oxigênio
9.
Toxicol Appl Pharmacol ; 479: 116727, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37863361

RESUMO

Iron overload cardiomyopathy (IOC) is the leading cause of death in cases of iron overload in patients. Previous studies demonstrated that iron overload led to cardiomyocyte dysfunction and death through multiple pathways including apoptosis, necroptosis and ferroptosis. However, the dominant cell death pathway in the iron-overloaded heart needs clarification. We tested the hypothesis that ferroptosis, an iron-dependent cell death, plays a dominant role in IOC, and ferroptosis inhibitor exerts greater efficacy than inhibitors of apoptosis and necroptosis on improving cardiac function in iron-overloaded rats. Iron dextran was injected intraperitoneally into male Wistar rats for four weeks to induce iron overload. Then, the rats were divided into 5 groups: treated with vehicle, apoptosis inhibitor (z-VAD-FMK), necroptosis inhibitor (Necrostatin-1), ferroptosis inhibitor (Ferrostatin-1) or iron chelator (deferoxamine) for 2 weeks. Cardiac function, mitochondrial function, apoptosis, necroptosis and ferroptosis were determined. The increased expression of apoptosis-, necroptosis- and ferroptosis-related proteins, were associated with impaired cardiac and mitochondrial function in iron-overloaded rats. All cell death inhibitors attenuated cardiac apoptosis, necroptosis and ferroptosis in iron-overloaded rats. Ferrostatin-1 was more effective than the other drugs in diminishing mitochondrial dysfunction and Bax/Bcl-2 ratio. Moreover, both Ferrostatin-1 and deferoxamine reversed iron overload-induced cardiac dysfunction as indicated by restored left ventricular ejection fraction and E/A ratio, whereas z-VAD-FMK and Necrostatin-1 only partially improved this parameter. These results indicated that ferroptosis could be the predominant form of cardiomyocyte death in IOC, and that inhibiting ferroptosis might be a potential novel treatment for IOC.


Assuntos
Cardiomiopatias , Ferroptose , Sobrecarga de Ferro , Ratos , Humanos , Masculino , Animais , Desferroxamina/metabolismo , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Necroptose , Volume Sistólico , Ratos Wistar , Função Ventricular Esquerda , Apoptose , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/metabolismo , Ferro/metabolismo , Cardiomiopatias/tratamento farmacológico , Cardiomiopatias/prevenção & controle , Cardiomiopatias/induzido quimicamente , Mitocôndrias , Miócitos Cardíacos/metabolismo
10.
Medicine (Baltimore) ; 102(41): e35455, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37832083

RESUMO

This century has seen a revolution the management of beta-thalassemia major. Over a 12-year period to 2016, we aimed to analyze the benefits of such advances. In 209 patients, independent of the chelation regimen, ferritin, cardiac T2* and liver iron concentration changes were evaluated. We defined chelation success (ChS) as no iron load in the heart and acceptable levels in the liver. Over 3 early magnetic resonance imagings, the same parameters were assessed in 2 subgroups, the only 2 that had sufficient patients continuing on 1 regimen and for a significant period of time, 1 on deferrioxamine (low iron load patients n = 41, Group A) and 1 on deferoxamine-deferiprone (iron overloaded n = 60, Group B). Finally, 28 deaths and causes were compared to those of an earlier period. The 209 patients significantly optimized those indices, while the number of patients with chelation success, increased from 6% to 51% (P < .0001). In group A, ChS after about 8 years increased from 21 to 46% (P = .006), while in Group B, from 0% to 60% (P < .001) after about 7 years. Deaths over the 2 periods showed significant reduction. Combined clearance of cardiac and liver iron (ChS) is feasible and should become the new target for all patients. This requires, serial magnetic resonance imagings and often prolonged intensified chelation for patients.


Assuntos
Quelantes de Ferro , Talassemia beta , Humanos , Quelantes de Ferro/uso terapêutico , Talassemia beta/tratamento farmacológico , Desferroxamina/uso terapêutico , Deferiprona/uso terapêutico , Terapia por Quelação , Piridonas/uso terapêutico , Ferro/uso terapêutico , Fígado/diagnóstico por imagem
11.
Ann N Y Acad Sci ; 1529(1): 33-41, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37594980

RESUMO

Combination chelation therapies are considered in transfusion-dependent thalassemia patients for whom monotherapy regimens have failed to achieve iron balance or intensification of iron chelation therapy is required for the rapid reduction of excess iron to avoid permanent organ damage. Combination chelation may provide a more flexible approach for individualizing chelation therapy, thereby improving tolerability, adherence, and quality of life. In principle, iron chelators can be combined with an infinite number of dosing regimens; these involve simultaneous or sequential exposure to the chelators on the same day or alternating the drugs on different days. Clinical studies have established the safety and efficacy of chelation combinations. However, real-life data with combination therapies indicate the significance of compliance for a meaningful reduction in iron overload compared to monotherapies.


Assuntos
Terapia por Quelação , Sobrecarga de Ferro , Humanos , Deferasirox/uso terapêutico , Desferroxamina/uso terapêutico , Deferiprona/uso terapêutico , Qualidade de Vida , Benzoatos/efeitos adversos , Triazóis , Piridonas , Quelantes de Ferro/uso terapêutico , Quelantes de Ferro/efeitos adversos , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/induzido quimicamente , Ferro , Quimioterapia Combinada
12.
Medicina (Kaunas) ; 59(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37476546

RESUMO

Colonic inflammatory bowel disease (IBD) encompasses ulcerative colitis (UC) and Crohn's colitis (CC). Patients with IBD are at increased risk for colitis-associated colorectal cancer (CACRC) compared to the general population. CACRC is preceded by IBD, characterized by highly heterogenous, pharmacologically incurable, pertinacious, worsening, and immune-mediated inflammatory pathologies of the colon and rectum. The molecular and immunological basis of CACRC is highly correlated with the duration and severity of inflammation, which is influenced by the exogenous free hemoglobin alpha chain (HbαC), a byproduct of infiltrating immune cells; extravasated erythrocytes; and macrophage erythrophagocytosis. The exogenous free HbαC prompts oxygen free radical-arbitrated DNA damage (DNAD) through increased cellular reactive oxygen species (ROS), which is exacerbated by decreased tissue antioxidant defenses. Mitigation of the Fenton Reaction via pharmaceutical therapy would attenuate ROS, promote apoptosis and DNAD repair, and subsequently prevent the incidence of CACRC. Three pharmaceutical options that attenuate hemoglobin toxicity include haptoglobin, deferoxamine, and flavonoids (vitamins C/E). Haptoglobin's clearance rate from plasma is inversely correlated with its size; the smaller the size, the faster the clearance. Thus, the administration of Hp1-1 may prove to be beneficial. Further, deferoxamine's hydrophilic structure limits its ability to cross cell membranes. Finally, the effectiveness of flavonoids, natural herb antioxidants, is associated with the high reactivity of hydroxyl substituents. Multiple analyses are currently underway to assess the clinical context of CACRC and outline the molecular basis of HbαC-induced ROS pathogenesis by exposing colonocytes and/or colonoids to HbαC. The molecular immunopathogenesis pathways of CACRC herein reviewed are broadly still not well understood. Therefore, this timely review outlines the molecular and immunological basis of disease pathogenesis and pharmaceutical intervention as a protective measure for CACRC.


Assuntos
Neoplasias Colorretais , Doenças Inflamatórias Intestinais , Linfo-Histiocitose Hemofagocítica , Humanos , Antioxidantes , Desferroxamina/uso terapêutico , Eritrócitos/metabolismo , Eritrócitos/patologia , Haptoglobinas/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/uso terapêutico
13.
Curr Drug Targets ; 24(8): 688-696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37278033

RESUMO

INTRODUCTION: Several studies demonstrated that deferoxamine, an iron chelator, can improve inflammatory alterations in adipose tissue induced by obesity. Obesity alterations in adipose tissue are also associated with tissue remodeling, and deferoxamine has anti-fibrosis action previously described in sites like the skin and liver. METHODS: In this work, we analyzed deferoxamine effects on adipose tissue fibro-inflammation during obesity induced by diet in mice. in vitro approaches with fibroblasts and macrophages were also carried out to elucidate deferoxamine activity. RESULTS: Our results demonstrated that in addition to exerting anti-inflammatory effects, reducing the cytokine production in adipose tissue of obese mice and by human monocyte differentiated in macrophage in vitro, deferoxamine can alter metalloproteinases expression and extracellular matrix production in vivo and in vitro. CONCLUSION: Deferoxamine could be an alternative to control fibro-inflammation in obese adipose tissue, contributing to the metabolic improvements previously described.


Assuntos
Desferroxamina , Resistência à Insulina , Humanos , Animais , Camundongos , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Desferroxamina/metabolismo , Tecido Adiposo , Obesidade/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Camundongos Endogâmicos C57BL
15.
Brain Res ; 1812: 148383, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37149247

RESUMO

Traumatic brain injury (TBI) is an important reason of neurological damage and has high morbidity and mortality rates. The secondary damage caused by TBI leads to a poor clinical prognosis. According to the literature, TBI leads to ferrous iron aggregation at the site of trauma and may be a key factor in secondary injury. Deferoxamine (DFO), which is an iron chelator, has been shown to inhibit neuron degeneration; however, the role of DFO in TBI is unclear. The purpose of this study was to explore whether DFO can ameliorate TBI by inhibiting ferroptosis and neuroinflammation. Here, our findings suggest that DFO can reduce the accumulation of iron, lipid peroxides, and reactive oxygen species (ROS) and modulate the expression of ferroptosis-related indicators. Moreover, DFO may reduce NLRP3 activation via the ROS/NF-κB pathway, modulate microglial polarization, reduce neutrophil and macrophage infiltration, and inhibit the release of inflammatory factors after TBI. Additionally, DFO may reduce the activation of neurotoxic responsive astrocytes. Finally, we demonstrated that DFO can protect motor memory function, reduce edema and improve peripheral blood perfusion at the site of trauma in mice with TBI, as shown by behavioral experiments such as the Morris water maze test, cortical blood perfusion assessment and animal MRI. In conclusion, DFO ameliorates TBI by reducing iron accumulation to alleviate ferroptosis and neuroinflammation, and these findings provide a new therapeutic perspective for TBI.


Assuntos
Lesões Encefálicas Traumáticas , Ferroptose , Camundongos , Animais , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Doenças Neuroinflamatórias , Espécies Reativas de Oxigênio/metabolismo , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Ferro/metabolismo
16.
Aesthet Surg J ; 43(7): 789-798, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-36952294

RESUMO

BACKGROUND: The volume retention rate after autologous fat transplantation is unpredictable and unstable. Deferoxamine mesylate (DFO) is a drug approved by the FDA that is safe, has antioxidant effects, and can promote angiogenesis. OBJECTIVES: The aim of this study was to transplant DFO-pretreated fat granules into nude mice to observe the proangiogenic effect of DFO and to evaluate whether this treatment could also improve the retention rate of fat transplantation. METHODS: A total of 24 nude mice were transplanted with human adipose tissue that had been pretreated with different concentrations of DFO (0.5, 1, and 4 mM). Samples were collected at 1 and 3 months. After sampling, weight/volume retention rate, immunohistochemistry, and polymerase chain reaction were analyzed. The effects and mechanisms of DFO-pretreated fat grafts were evaluated. RESULTS: The in vivo experimental results showed that DFO-pretreated adipose fat significantly improved the postoperative weight/volume retention rate. The results of the immunohistochemical staining indicated that the integrity and activity of the adipocytes in the DFO-pretreated groups were better than in the control group. The polymerase chain reaction results were consistent with the immunohistochemistry results (CD31), suggesting that DFO promoted angiogenesis in the grafts. CONCLUSIONS: The results of this study indicate that preconditioning fat grafts with DFO can improve the effect of fat transplantation by promoting vascular regeneration.


Assuntos
Tecido Adiposo , Desferroxamina , Camundongos , Animais , Humanos , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Camundongos Nus , Taxa de Sobrevida , Tecido Adiposo/transplante , Adipócitos
17.
Hematol Oncol Clin North Am ; 37(2): 379-391, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907610

RESUMO

Conventional therapy for severe thalassemia includes regular red cell transfusions and iron chelation therapy to prevent and treat complications of iron overload. Iron chelation is very effective when appropriately used, but inadequate iron chelation therapy continues to contribute to preventable morbidity and mortality in transfusion-dependent thalassemia. Factors that contribute to suboptimal iron chelation include poor adherence, variable pharmacokinetics, chelator adverse effects, and difficulties with precise monitoring of response. The regular assessment of adherence, adverse effects, and iron burden with appropriate treatment adjustments is necessary to optimize patient outcomes.


Assuntos
Sobrecarga de Ferro , Talassemia , Talassemia beta , Humanos , Talassemia beta/terapia , Quelantes de Ferro/uso terapêutico , Deferiprona/uso terapêutico , Desferroxamina/uso terapêutico , Piridonas/uso terapêutico , Sobrecarga de Ferro/etiologia , Talassemia/terapia , Ferro/uso terapêutico
18.
Expert Rev Hematol ; 16(2): 81-94, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755516

RESUMO

INTRODUCTION: Regular blood transfusions in patients with thalassemia syndromes can cause iron overload resulting in complications including cirrhosis, heart problems, or endocrine abnormalities. To prevent iron overload toxicity in these patients, three iron chelators are currently FDA-approved for use: deferoxamine, deferasirox, and deferiprone. In the United States, deferiprone has been approved for three times daily dosing since 2011 and has recently gained approval for twice-daily administration. AREAS COVERED: A PubMed literature search was performed with the keywords 'deferiprone' and 'thalassemia.' Relevant original research studying deferiprone's effects on transfusional iron overload in patients with thalassemia syndromes was included. Exclusion criteria included case reports and review papers. Deferiprone is effective at reducing serum ferritin levels in patients with iron overload. Twice-daily administration provides a similar level of iron chelation as three times daily dosing with a comparable side effect profile and increased patient acceptability. EXPERT OPINION: New studies are highlighting deferiprone's potential for combination therapy with either deferoxamine or deferasirox to improve iron chelation. Deferiprone's ability to significantly decrease cardiac and liver iron content can be utilized in other transfusion-dependent hematologic conditions, as evidenced by its recent approval for use in the United States for sickle cell disease or other anemias.


Assuntos
Sobrecarga de Ferro , Talassemia , Humanos , Deferasirox/uso terapêutico , Desferroxamina/uso terapêutico , Síndrome , Sobrecarga de Ferro/tratamento farmacológico , Sobrecarga de Ferro/etiologia , Quelantes de Ferro/uso terapêutico , Talassemia/complicações , Talassemia/terapia , Transfusão de Sangue , Piridonas/efeitos adversos , Benzoatos
19.
Nutrients ; 15(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36771298

RESUMO

Iron functions as an essential micronutrient and participates in normal physiological and biochemical processes in the cardiovascular system. Ferroptosis is a novel type of iron-dependent cell death driven by iron accumulation and lipid peroxidation, characterized by depletion of glutathione and suppression of glutathione peroxidase 4 (GPX4). Dysregulation of iron metabolism and ferroptosis have been implicated in the occurrence and development of cardiovascular diseases (CVDs), including hypertension, atherosclerosis, pulmonary hypertension, myocardial ischemia/reperfusion injury, cardiomyopathy, and heart failure. Iron chelators deferoxamine and dexrazoxane, and lipophilic antioxidants ferrostatin-1 and liproxstatin-1 have been revealed to abolish ferroptosis and suppress lipid peroxidation in atherosclerosis, cardiomyopathy, hypertension, and other CVDs. Notably, inhibition of ferroptosis by ferrostatin-1 has been demonstrated to alleviate cardiac impairments, fibrosis and pathological remodeling during hypertension by potentiating GPX4 signaling. Administration of deferoxamine improved myocardial ischemia/reperfusion injury by inhibiting lipid peroxidation. Several novel small molecules may be effective in the treatment of ferroptosis-mediated CVDs. In this article, we summarize the regulatory roles and underlying mechanisms of iron metabolism dysregulation and ferroptosis in the occurrence and development of CVDs. Targeting iron metabolism and ferroptosis are potential therapeutic strategies in the prevention and treatment of hypertension and other CVDs.


Assuntos
Doenças Cardiovasculares , Ferroptose , Hipertensão , Traumatismo por Reperfusão Miocárdica , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Desferroxamina/farmacologia , Desferroxamina/uso terapêutico , Peroxidação de Lipídeos , Ferro/metabolismo
20.
J Control Release ; 356: 84-92, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813037

RESUMO

Iron-overload diseases are characterized by a variety of symptoms resulting from excessive iron stores, oxidative stress and consequent end-organ damage. Deferoxamine (DFO) is an iron-chelator that can protect tissues from iron-induced damage. However, its application is limited due to its low stability and weak free radical scavenging ability. Herein, natural polyphenols have been employed to enhance the protective efficacy of DFO through the construction of supramolecular dynamic amphiphiles, which self-assemble into spherical nanoparticles with excellent scavenging capacity against both iron (III) and reactive oxygen species (ROS). This class of natural polyphenols-assisted nanoparticles was found to exhibit enhanced protective efficacy both in vitro in an iron-overload cell model and in vivo in an intracerebral hemorrhage model. This strategy of constructing natural polyphenols- assisted nanoparticles could benefit the treatment of iron-overload related diseases with excessive accumulation of toxic or harmful substances.


Assuntos
Sobrecarga de Ferro , Nanopartículas , Humanos , Desferroxamina/uso terapêutico , Desferroxamina/farmacologia , Quelantes de Ferro/uso terapêutico , Polifenóis/uso terapêutico , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...